
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of  
Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty- 
free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National 
Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National 
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the  
viewpoint of a publication or guarantee its technical correctness. 

FORM 836 (10/96) 
 

LA-UR-03-1872 
Approved for public release;  
distribution is unlimited. 

Title: 
Using Godunov's Two-Sided Sturm Sequences to 
Accurately Compute Singular Vectors of 
Bidiagonal Matrices 
 
  
 
 
 
 
 
 

Author(s): A.M. Matsekh and E.P. Shurina 
 
 
 

 
 
 
 
 
  
 
 
 
 

Submitted to:  
 
 
 
http://lib-www.lanl.gov/cgi-bin/getfile?00937093.pdf 



Using Godunov’s
Two-Sided Sturm
Sequences to Accurately
Compute Singular
Vectors of Bidiagonal
Matrices.

A.M. Matsekh∗† E.P. Shurina‡

1 Introduction
We present a hybrid scheme for computing singular vectors of bidiagonal matri-
ces based on Godunov’s two-sided Sturm sequence method [1] and Inverse Itera-
tion [2]. This scheme is applied to the equivalent tridiagonal symmetric eigenvalue
problem with corresponding matrix in the Golub-Kahan form. Two-sided Sturm
sequences and the underlining theory were introduced in early 80’s by S.K.Godunov
who showed that provably accurate eigenvectors can be computed from two-sided
Sturm sequences in only O(n) floating operations per an eigenvector from the cor-
responding two-sided Sturm sequence. This is equivalent to determining and elim-
inating redundant equation from the homogeneous underdetermined linear system
(A − λI)x = 0. This was the first provably accurate solution to the Wilkinson’s
problem [2], [3]. Unfortunately in finite precision Godunov’s eigenvectors deliver
residuals that are a few orders of magnitude larger than residuals of eigenvectors
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computed with some implementations of Inverse Iteration. To improve accuracy of
eigenvectors and singular vectors computed using Godunov’s method, we developed
a hybrid algorithm which we call Godunov-Inverse Iteration. The computational
scheme that we use to find singular vectors of bidiagonal matrices using this hybrid
method can be described as follows. We use a version of bisection method based
on the classical, or, in Godunov’s terminology, one-sided Sturm-sequences, to find
the smallest machine representable intervals that contain eigenvalues of the Golub-
Kahan form with high guaranteed accuracy, followed by Godunov’s method to find
eigenvector approximations of the Golub-Kahan matrix. We then apply one or two
steps of Inverse Iteration with reorthogonalization with a special choice of shift
and selective reorthogonalization to iteratively improve the computed eigenvectors.
The resulting eigenvectors contain interlacing components of the corresponding left
and right singular vectors of the original matrix. Eigenvectors and singular vectors
computed using Godunov–Inverse Iteration do not suffer from the loss of accuracy
and orthogonality characteristic of finite precision implementations of Godunov’s
method, and typically requires only one iteration step to obtain singular vectors
that satisfy original problem to higher accuracy than Inverse Iteration which can
take up to six iteration steps to converge. In addition convergence of the Inverse
Iteration is not guaranteed, while Godunov-Inverse Iteration inherits guaranteed
nature of Godunov’s algorithm.

2 Singular value decomposition
An arbitrary matrix A ∈ Rp×m can be reduced to an equivalent form

D̃ = P ∗AQ

where P ∈ Rp×p and Q ∈ Rm×m are orthogonal, and nonzero part D ∈ Rn×n, n =
min{p,m} of the matrix D̃ ∈ Rp×m is a bidiagonal matrix [4]. Without loss of
generality we can assume that D is an upper bidiagonal matrix of the form:

D =


c0 a0

c1 a1

. . . . . .
cn−2 an−2

cn−1

 . (1)

Singular value decomposition
D = XΣY ∗

factors matrix D ∈ Rn×n into the product of orthogonal matrices X ∈ Rn×n and
Y ∈ Rn×n and diagonal matrix Σ with singular values σi, i = 1, 2, . . . , n on its
main diagonal. Singular values and singular vectors of the matrix D can be found
by solving symmetric eigenvalue problem with the matrix D in the Jordan-Wielandt
form [5], [6]:

J =
[

0 D
D∗ 0

]
.



Spectrum of the matrix J contains singular values of the matrix D:

λ(J) = {σ(D)} ∪ {−σ(D)}.

A more economical approach to finding singular values of the matrix D from a
matrix permutationally equivalent to the matrix J was introduced by Golub and
Kahan [7]. In this approach J is transformed to the permutationally equivalent
tridiagonal symmetric matrix G with zeros on the main diagonal which Fernando [5]
proposed to call the Golub-Kahan form:

G =



0 c0
c0 0 a0

a0 0 c1

c1
. . . . . .
. . . 0 cn−1

cn−1 0


. (2)

Permutation is an orthogonal transformation, which means that it keeps spectral
properties of the matrix J unchanged, that is:

λ(G) = {σ(D)} ∪ {−σ(D)}.

Let Π be a permutation which transforms Jordan-Wielandt form of the bidiagonal
matrix D to the corresponding Golub-Kahan form. When applied to the composite
vector

w =
(
v
u

)
permutation P transforms w into the vector with interlacing components of u and
v:

x = Π
(
v
u

)
= Π



v1

...
vn
u1

...
un


=



v1

u1

v2

u2

...
vn
un


. (3)

If w is an eigenvector of the Jordan-Wielandt matrix J̃ , then

ΠJ̃w = ΠJ̃Π∗Πw = GΠw = Gx,

which means that components of the left and right singular vectors v and u can be
easily recovered from the eigenvectors of the corresponding Golub-Kahan matrix G
using relationship (3).



3 Bisection method based on one-sided Sturm
sequences

The accuracy of eigenvectors computed by Godunov’s method strongly depends on
the accuracy of the eigenintervals computed with the bisection method. Following
Godunov [8] we implemented a finite precision variant of the Wilkinson’s bisec-
tion algorithm [2] which uses Sturm sequences to find intervals (αi, βi) containing
eigenvalues µi of the tridiagonal symmetric matrix G

G =



d0 b0
b0 d1 b1

b1
. . . . . .
. . . . . . bn−2

bn−2 dn−1

 (4)

with guaranteed accuracy

|βi − αi| ≤ εmach F(G), i = 1, . . . , n,

where εmach is the unit roundoff error and F(G) is some norm of the matrix G.
We prefer Godunov’s version of the bisection method [8] based on the use of Sturm
sequences to the inertia based bisection method [5], as in our implementations Sturm
sequences give slightly more accurate eigenvalue approximations. Sturm sequence
of the tridiagonal symmetric matrix G (4) (or in Godunov’s terminology one-sided
Sturm sequence) is computed for an eigenvalue approximation λ as follows:

P0(λ) =

 |b0|/(d0 − λ), b0 6= 0

1/(d0 − λ), b0 = 0
(5a)

Pk(λ) =

 |bk|/(dk − λ− |bk−1|)Pk−1(λ), bk 6= 0 ∩ k < (n− 1)

1/(dk − λ− |bk−1|)Pk−1(λ), bk = 0 ∪ k = (n− 1),
, (5b)

where k = 1, 3, . . . , n− 1. Bisection method uses Sturm theorem which states that
the number of nonpositive elements in the recurrence (5) coincides with the number
of eigenvalues of the matrix G which are less than λ. In eigenvalue problems initial
interval (β, α) is determined from Gershgorin circles. In singular value computations
for the Golub-Kahan form we can give a more accurate estimate of the initial interval
to be partitioned. Singular values of the bigiagonal matrix D (1) coincide with
nonnegative eigenvalues of the corresponding Golub-Kahan matrix G (2). It should
be noted that if none of the diagonal elements ci, ai, of the bidiagonal matrix D (1)
is zero, than all singular values of the matrix D are positive [8]:

0 < λn+1 < λn+2 < . . . < λ2n < M(G),



where M(G) is sometimes refereed to as Gershgorin norm of the matrix G and is
computed as follows:

M(G) = max


|d0|+ b0|

max
1≤i<n−1

|di|+ |bi|+ |bi+1|

|dn−1|+ |bn−1|
. (6)

Upper bound Y of the initial bisection interval [X,Y ] can be chosen to be

Y = M(G),

while lower bound X can be determined as follows:

X = |c0c1 · · · cn−1|/Y n−1.

Obviously if numbers ci, i = 0 . . . n are very small in floating point arithmetics X
can get arbitrary small and as a result rounded to zero. In this case rescaling can
be used to compute X. By letting λ′ = (X+Y )/2 in the classical bisection method
we can compute Sturm sequence for λ′ and thus determine whether eigenvalue
(singular value) λ belongs to [X,λ′), or (λ′, Y ]. We then set interval [X,Y ] to
be either [X,λ′), or (λ′, Y ]. This process is repeated until the size of the interval
[X,Y ] is comparable to the unit roundoff error εmach. Godunov’s algorithm requires
an interval version of the bisection method, in which instead of the eigenvalue
approximation λ′ = (X + Y )/2 eigeninterval [λ′ − δ, λ′ + δ] is considered, and
subintervals [X,λ′−δ), (λ′+δ, Y ] are considered instead of the subintervals [X,λ′),
(λ′, Y ], and where δ is a small disturbance in the order εmach. In our implementation
of Godunov’s bisection algorithm unit roundoff εmach is an optimal choice of the
parameter δ. We generally terminate this iteration when the following condition is
satisfied [9]:

|βi − αi| ≤ εmach(|βi|+ |αi|), i = 1, . . . , n

or the number of iterations equals

t = [log2(M(G)/εmach)].

Indeed, the length of the largest initial bisection interval is M(G) and after t bi-
section steps the length of the interval will be comparable to the unit roundoff
εmach:

M(G)/2t ' εmach.

4 Godunov’s method and Godunov–Inverse Iteration
Godunov’s method [8], [1] was designed to compute eigenvectors of an unreduced
symmetric tridiagonal matrix (4) in a floating point model that supports extended
precision and directed rounding. Let (αi, βi) be an eigeninterval that is guaranteed
to contain an eigenvalue µi(G) of the matrix G. Such an interval can be found by
the bisection method with the accuracy [8]

|βi − αi| ≤ c(γ) εmach M(G), (7)



where c(γ) is a constant that depends on the base of floating point exponent γ, and
M(G) is Gershrorin norm of the matrix G (6). Godunov derives left-sided Sturm
sequence P+

k (αi) from the minors of the matrix G− αiI [8]:

P+
0 (αi) = |b0|/(d0 − αi) (8a)

P+
k (αi) = |bk|/(dk − αi − |bk−1|)P+

k−1(αi) (8b)

P+
n−1(αi) = 1/(dn−1 − αi − |bn−2|)P+

n−2(αi) (8c)

and the right-sided Sturm sequence P−k (βi) from the minors of the matrixG−βiI [8]:

P−n−1(βi) = dn−1 − βi (9a)

P−k (βi) = (dk − βi − |bk|/P−k+1(βi))/|bk−1| (9b)

P−0 (βi) = d0 − βi − |b0|/P−1 (βi) (9c)

Left-sided and right-sided Sturm sequences are then joint into the two-sided Sturm
sequence

P0(µi), . . . , Pn−1(µi)
def= P+

0 (αi), . . . P+
l (αi), P−l+1(βi), . . . P−n−1(βi). (10)

Sequences (8) and (9) are joint at the index l = l+ = l− which satisfies the following
condition [8]:

(P+
l (αi)− P−l (βi))(1/P−l+1(βi)− 1/P+

l+1(αi)) ≤ 0,

where l+ be the number of nonpositive elements in the sequence P+
k (αi), k =

0, . . . , n − 1, and n − 1 − l− is the number of nonnegative elements in the se-
quence P−k (βi), k = n− 1, . . . , 0. Resulting two-sided Sturm sequence (10) is used
to compute provably accurate eigenvector approximation ui corresponding to the
eigenvalue approximation µi(G) ∈ (αi, βi) as follows:

ui0 = 1 and uik = −uik−1sign(bk−1)/Pk−1(µi). (11)

This computation requires only O(n) operations per a normalized eigenvector. In fi-
nite precision eigenvectors constructed from the left-sided and the right-sided Sturm
sequences for the same parameter λ are different, even though analytically they co-
incide. If matrix G (4) is a Golub-Kahan matrix, presence of zero elements on
the main diagonal may result in nonnumeric values of the elements of Sturm se-
quences (8)-(9). To avoid this in double precision IEEE arithmetics it is sufficient
to change these zeros to very small machine numbers. In our implementation of
Godunov’s algorithms it was sufficient to change elements of the main diagonal to
εmin/εmach, where εmin is the smallest machine representable number and εmach is
unit roundoff in IEEE double precision arithmetics.
Godunov’s method is a direct method and due to the rounding errors in finite
precision theoretical error bound for the eigenvectors computed according to the
Godunov’s method [8]:

‖(G− µkI)uk‖2 ≤ 13
√

3 εmach ‖G‖2 ‖uk‖2



can not be achieved. At the same time two-sided Strum sequence computations
are susceptible to division by zero and overflow errors, while collinear and almost
collinear eigenvectors of closely clustered and computationally coincident eigenval-
ues are not reorthogonalized. As a result in empirical studies residuals of Godunov’s
vectors appear inferior to those of the eigenvectors computed by Inverse Iteration
algorithm used in the LAPACK. Godunov–Inverse Iteration uses Godunov’s eigen-
vector uk corresponding to an eigenvalue µk ∈ (αk, βk) as an extremely accurate
starting vector in a one- or two- step Inverse Iteration with selective reorthogonal-
ization. On each step of the Godunov–Inverse Iteration the following tridiagonal
linear system is solved:

(G− βkI)x = uk,

followed by Modified Gram–Schmidt reorthogonalization of the computed vector
x against previous vectors that correspond to eigenvalues close or coincident with
µk. Inverse Iteration may break down when very accurate eigenvalue approxima-
tions µk are used as shifts, because shifted iteration matrix G − µkI in this case
is nearly singular. To avoid this, small perturbations are usually introduced into
the shift µk to assure convergence to the corresponding Ritz vectors. But even
small arbitrary deviations of the Ritz values from exact eigenvalues may produce
significant deviations of Ritz vectors from the actual eigenvectors. We solve this
problem by using either left or right-hand bound αk or βk of the eigenvalue interval
(αi, βi) 3 µi, i = 1, . . . , n found by the bisection algorithm (either Sturm based [8]
or inertia-based [5] versions of the bisection algorithm) as accurate shifts that are
guaranteed to be within the error bounds (7). We use Wilkinson’s stopping criteria
for a nonnormalized eigenvector approximation xk [2] ‖xk‖∞ ≥ 2t/100n to verify
that convergence is achieved. In most cases convergence is achieved after one step
of Inverse Iteration.

The overall computational scheme that we use to find singular vector decom-
position of a real rectangular or a real bidiagonal matrix using Godunov-Inverse
Iteration algorithm can be formalized as follows:

• If the original matrix is not in bidiagonal form find orthogonal transformations
P and Q such that nonzero part of the matrix P ∗AQ is a square bidiagonal
matrix D ∈ Rn×n.

• Determine n smallest machine representable intervals (αk, βk), k = n+ 1, n+
2, . . . , 2n that contain n largest eigenvalues λn+1, λn+2, . . . , λ2n of the Golub-
Kahan matrix G,dim(G) = 2n× 2n. Matrix G should not be formed explic-
itly.

• Compute Godunov’s left and right-hand Sturm sequences for the left and right
bounds of the eigenintervals αk and βk, k = n+ 1, n+ 2, . . . , 2n respectively.

• Combine left and right Sturm sequences into a two-sided Sturm sequence and
use it to recursively determine Godunov eigenvectors corresponding to the
eigenvalues λn+1, λn+2, . . . , λ2n.



• Run one or two steps of the Inverse Iteration with reorthogonalization with
Godunov’s vectors as starting vectors to improve Godunov’s eigenvectors. Use
αk or βk instead of λk as Inverse Iteration shifts to avoid iteration breakdown.

• Form left singular vectors of the bidiagonal matrixD from the odd components
of the iteratively improved Godunov’s eigenvectors and right singular vectors
from the even components of the same eigenvectors.

• If the original matrix was not bidiagonal apply orthogonal transformations
P and Q∗ to the matrices of left and right singular vectors of the matrix D
respectively to obtain left and right singular vectors of the original matrix.

5 Experimental results
We implemented and tested Godunov’s version of the bisection method which uses
one-sided Sturm sequences, Godunov’s method and Godunov–Inverse Iteration,
which use two-sided Sturm sequences, and Inverse Iteration with random start-
ing vectors (our implementation of the LAPACK procedure xSTEIN [10]) in ANSI
C (GNU C compiler version 2.96) in IEEE double precision and tested these pro-
grams on an Intel r© XeonTM CPU 1500 MHz processor. To make a fair comparison
we compute eigenvalue approximations only once and use these eigenvalues (or cor-
responding eigenintervals in the Godunov’s routines) to compute eigenvectors using
three different eigenvector methods, while in both Inverse Iteration implementa-
tions we use the same direct solver for systems of linear algebraic equations with
tridiagonal symmetric matrices. Matrices A1 −A4 in the four test examples below
were borrowed from [8] to illustrate results of our implementation of the Godunov’s
bisection method (Table 1), and to compare Godunov’s method, Godunov-Inverse
Iteration and Inverse Iteration with random uniform starting vectors (Table 2).
By guaranteed accuracy of the computed singular values for each of the matrices
A1 − A4 in the Table 1 we denote the size of the largest eigeninterval computed
for the corresponding matrix. We used these values to compute corresponding sin-
gular vectors. We report residual errors and deviation from orthogonality for these
singular vectors in the Table 2. We can see that residual errors and deviation
from orthogonality in the singular vectors computed by Godunov’s method were
unacceptable. Singular vectors computed by the Godunov-Inverse Iteration in one
step satisfied original problem to slightly higher accuracy than Inverse Iteration,
which required tree to five iteration steps for convergence. Singular vectors com-
puted by the Inverse Iteration were closer to orthonormal basis than singular vectors
computed by the Gogunov-Inverse Iteration, but at the cost of extra iteration and
reorthogonalization steps.

Test problem 1. UTA1 V, dim(A1) = n× n, n = 1000.



A1 =


1 10

. . . . . .
1 10

1



Test problem 2. UTA2 V, dim(A2) = n× n, n = 1000.

A2 =


0.01 900

. . . . . .
0.01 900

0.01

 ,

Test problem 3. UTA3 V, dim(A3) = n× n, n = 1000.

A3 =


0.5 0.5

. . . . . .
0.5 0.5

0.5

 ,

Singular values of the matrix A3 are the roots of the Chebyshev polynomials of
second kind, analytical formula for which has the following form [8]:

σi =
cos(n− i)π

2n+ 1
, i = 0, 1, . . . , n− 1.

Test problem 4. UTA4 V, dim(A4) = n× n, n = 1000.

A4 =


d1 b1

. . . . . .
dn−1 bn−1

dn

 ,

Main diagonal: di = (i + 1)/
√

((2i + 1)(2i + 3)), i = 0, 2, . . . , 2n − 2, Co-
diagonal: bi = (i + 1)/

√
((2i + 1)(2i + 3)), i = 1, 3, . . . , 2n − 3. Singular values of

this matrix are the orthonormal Legendre polynomials [8].

6 Conclusions
Singular value decomposition of bidiagonal matrices is equivalent to the eigenvalue
problem with symmetric tridiagonal matrix with main zero diagonal, known as



Table 1. Guaranteed accuracy of singular values computed by the Sturm-
sequence based bisection method for the matrices from the test problems 1-4.

matrix max
1≤i≤n

([xi, yi] 3 σi) σmax σmin

A1 2.66e− 15 1.0999995514634513e+ 01 9.3387812555515026e− 21
A2 2.84e− 13 9.0000999995065263e+ 02 1.1049609838450875e− 20
A3 2.77e− 16 9.9999876753247885e− 01 7.8500557994265214e− 04
A4 2.77e− 16 9.9999927746317030e− 01 7.8520175772144713e− 04

Table 2. Residual errors and deviation from the orthonormal basis of the
singular vectors computed for the matrices from the test problems 1-4.

matrix method ‖AkV − UΣ‖∞ ‖V TV − I‖∞ ‖UTU − I‖∞
Godunov 9.04e− 01 1.00e+ 00 6.56e− 10

A1 Inverse Iteration 1.97e− 15 9.68e− 15 9.66e− 15
Godunov Inverse Iteration 1.66e− 15 1.60e− 12 1.60e− 12

Godunov 9.99e− 01 1.00e+ 00 4.43e− 06
A2 Inverse Iteration 1.94e− 15 2.68e− 15 2.54e− 15

Godunov Inverse Iteration 1.91e− 15 7.97e− 09 7.97e− 09
Godunov 1.45e− 11 3.31e− 10 3.32e− 10

A3 Inverse Iteration 1.64e− 15 1.02e− 14 1.16e− 14
Godunov Inverse Iteration 1.50e− 15 4.08e− 13 4.08e− 13

Godunov 6.14e− 13 1.63e− 10 1.63e− 10
A4 Inverse Iteration 1.54e− 15 5.25e− 15 5.17e− 15

Godunov Inverse Iteration 1.49e− 15 3.18e− 13 3.18e− 13

Golub-Kahan form. This problem can be solved fast and efficiently by an interval
version of the bisection method followed by Godunov-Inverse Iteration algorithm –
a hybrid method based on the Godunov’s two-sided Sturm sequence method and
Inverse Iteration. It uses Godunov’s vectors as starting vectors in the Inverse Iter-
ation which have nontrivial component in the direction of the desired solution. To
ensure that Godunov-Inverse Iteration does not break down we use either end of the
computed eigenintervals rather than the centers of these intervals as the shifts in the
Inverse Iteration step. Typically Godunov-Inverse Iteration converges to desired ac-
curacy in just one step. Eigenvectors and singular vectors computed by the original
Godunov’s method suffer from orthogonality loss in the cases of computationally
coincident or closely clustered eigenvalues. We use selective reorthogonalization of
such vectors, an as a result obtain very accurate results in just one step in compar-
ison with Inverse Iteration, which, although deliveres slightly more accurate results
requires three to six iteration steps to convergence. High accuracy and low complex-
ity make Godunov-Inverse Iteration a promising method for large scale eigenvector
and singular vector computations.
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